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We study a site analogue of directed percolation. Random trajectories are 
generated and their critical behavior is studied. The critical behavior 
corresponds to that of simple percolation in some of the parameter space, but 
elsewhere the exponents reveal new universality classes. As a byproduct, we use 
the model to make an improved estimate of the percolation hull exponents and 
to calculate the site percolation probability for the square lattice. 
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1. I N T R O D U C T I O N  

Percolation problems constitute the simplest class of systems with "phase 
transitions. ''(1'2) The most basic types of percolation are site and bond per- 
colation, and the latter has a directed version, where the bond can only 
contribute to a percolating cluster in one direction. It is natural to ask if 
there is a site analogue of directed percolation. This paper studies in some 
detail such a model, which exhibits a variety of critical phenomena, and is 
related to ordinary percolation in a number of limits. 

In the model, (3) which is two-dimensional, all the sites and bonds exist 
and the bonds are directed, with both directions always being present. The 
randomness enters through a random rotation matrix (the angle of 
rotation 0 being 0, ___1r/2, or ~r) being associated with each site. This 
rotation matrix then maps "incoming" bonds associated with the sites into 
"outgoing" bonds by rotating the former into the latter. (It is in this sense 
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that the model constitutes a site analogue of directed bond percolation.) 
The resulting successions of bonds can be regarded as defining "trajec- 
tories"; indeed, the original motivation (3) was to construct a discrete model 
for charged particle motion in a magnetic field. The percolative aspect of 
the problem is whether the trajectories are extended or all are finite and 
localized, depending on the position in the parameter space defined by the 
probability distribution {P(0) }. 

The trajectories are not simple random walks, as the rotation matrices 
are "quenched," so that if a trajectory returns to a site, it must be rotated 
by the same angle as at the previous visit. (This is a difference from other 
models of random walks in magnetic fields. (4"5)) There is, however, a con- 
nection with more elaborate walks: when there are only sites with 0 = _+ r(2 
("turning" sites) and equal proportion of each sign, then the trajectories are 
equivalent to "kinetic growth walk" on the (directed) Manhattan lat- 
tice. (6'71 The kinetic growth walk (8) is a type of self-avoiding walk where the 
weighting of each step is a local process, unlike an ordinary self-avoiding 
walk. 

In certain limits there is also a direct connection to simple percolation. 
The limit of 0 being restricted to the values + re/2 can be mapped into bond 
percolation on the dual lattice, with the probability of one type of turning 
sign corresponding to that of occupied bonds and the probability of the 
other type of sign to that of empty bonds. (3) (Thus, the case of equal 
probabilities coincides with the critical point for bond percolation.) This 
limit of only turning signs is strictly equivalent to the random tiling model 
of Roux et al., (91 which was proven to be also equivalent to standard bond 
percolation. (1~ The line P0z)+  P(r~/2)= 1 [-or with P ( - g / 2 ) ]  corresponds 
to site percolation, with the "backwards" (0 = ~) playing the role of the 
empty sites and the turning signs that of the occupied sites. (3) The trajec- 
tories reside on the interface between the two types of sites and can be 
extended at the site percolation point [P(rc/2)= Pc].  

Indeed, the mapping onto bond percolation has been used to deter- 
mine the frac~al dimension of the percolation perimeter. ~H) This fractal 
dimension (d I = 7/4) was conjectured by Sapoval et al. (12) and was subse- 
quently derived exactly by Saleur and Duplantier. (~3) 

The hull of the percolation clusters (in site percolation) has been 
related to certain self-avoiding walks with memory by Ziff et  al., (14) in the 
square lattice, and by Weinrib and Trugman, (15) in the hexagonal lattice. 
The algorithms to generate these walks are equivalent to our model in the 
limit corresponding to site percolation. (In the case of the hexagonal lattice 
it again corresponds to having only backward and just one type of turning 
signs.) Ziff, (16) accepting the conjecture of Sapoval etal . ,  obtained other 
critical percolation perimeter exponents and made numerical tests of 
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some of them, using the previously mentioned perimeters generating 
algorithm.(14) 

Although the model contains simple percolation, does it contain other 
types of critical behavior? In this paper we show that there are critical 
surfaces in the parameter space {P(0)} away from points that map onto 
ordinary percolation points. Moreover, we shall show that the critical 
exponents indicate that the transitions are not in the same universality 
class as simple percolation. 

The plan of the paper is as follows: in the next section we define the 
model precisely and discuss some of its elementary properties; in the third 
section we demonstrate the existence of a critical surface in the parameter 
space and calculate the critical exponents; in the fourth section we use the 
model to determine to great accuracy the value of pc for site percolation on 
a square lattice; finally, in the fifth section we discuss extensions of our 
work and conclude. 

2. M O D E L  A N D  C R I T I C A L  P O I N T S  

In this section we define the model, discuss its elementary properties, 
and note the existence of critical points associated with maps onto the per- 
colation problem. We discuss how to characterize the critical points (and 
their vicinities), noting the relationship between the probability distribution 
function of the trajectory lengths and the perimeter distribution of percola- 
tion clusters. 

The model consists of an underlying lattice (square in this paper) with 
an "instruction" defined at each site; the trajectories are constructed by 
following the instructions. To be more precise: a particular realisation of 
the model is a lattice of sites with a two-dimensional rotation matrix R(n) 
associated with each site n. The magnitude 0 of the rotations may be 0, 
_+~/2, or 7r sites, with these values being called forward, left, right (or 
generically turning), and backward sites, respectively. The magnitudes are 
picked at random, with no correlation between different sites. A particular 
realization (or configuration) may be characterized by the set of 
probabilities {P(0)} that a randomly picked site will have magnitude 0. 
This set of parameters contains the important information; a convenient 
way to denote the points in this parameter space is to use the "coordinate 
system" (P(0), A, P(~)), where A = P ( ~ / 2 ) -  P ( - ~ / 2 )  (see Fig. 1). 

A trajectory is denoted by the set {r(s)}, where r(s) is the position of 
the "particle" or the front of the trajectory at time step s. The rotation 
matrix on a site rotates incoming directions into outgoing ones. Note that 
this is a one-to-one relationship, so the trajectory cannot branch, merge, or 
end. It is also important to note that the R(n) do not depend on the time 
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Fig. 1. The parameter space. B is the ballistic point, and O and Q are the points corre- 
sponding to bond and site percolation, respectively. 

step--if the trajectory returns to a site, the same value of 0 must be used. 
A consequence of these two points is that all trajectories must either be 
infinite or cyclic, and, moreover, that any trajectory which is contained in 
a finite area of the lattice must be cyclic. 

The most significant issue with this model is: are there regions of 
parameter space where the trajectories are extended? Isolated "critical" 
points exist, where there are extended trajectories, (trivially) at the 
"ballistic" point, (1, 0, 0), and (less trivially) at (0, 0, 0) and (0, Pc, 1 -Pc ) ,  
where Pc ~- 0.5928; they are shown in Fig. 1. The latter two points come 
from mapping the model onto bond and site percolation, respectively (Pc 
is the critical probability for site percolation on the square lattice). 3 

Since we have defined the model in a dynamical manner, it is natural 
to describe the properties in terms of the trajectories. The simplest charac- 
terisation is the number of trajectories as a function of arc length s, n(s) 
(note that this is zero for s odd). We will assume that any critical behavior 
is manifested by some change in this function at the critical points in the 
parameter space. By analogy with familiar critical phenomena, we suppose 
that the asymptotic behavior (at large s) of this function is of the form 

e 
n(s)=s ~f(2~/~s),u~ st (1) 

Here f(z)  is a scaling function, with the asymptotic form, for large z, as 
shown. We will comment on the form assumed for n(s) (i.e., the functional 
form of the argument of the exponential) in the next section. 

It is plausible (assuming a "second-order" transition) that as a point 
with extended trajectories is approached, 2-1 will diverge, leaving a power- 
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law trajectory distribution n(s) at the critical point, characterized by the 
exponent ~. We define the exponent for the divergence of 2-1 to be o-, i.e., 

~ lx-x~l  ~ (2) 

where x is an appropriate variable to measure the approach to the critical 
point at xc. Both z and ~ will be studied by Monte Carlo simulation in the 
following section of this paper. 

The issue of the appropriate parameter x is in general a difficult point. 
In the case of the lines which can be mapped onto percolation problems, 
the choice of x is determined by the mapping (see Fig. 1): it is 2A in the 
case of the point (0, 0, 0) and the line OA (Xc corresponds to A = 0); and 
P(rc/2) in the case of (0, Pc, 1 - Pc) and the line AC [xc there corresponds 
to P(~/2)=pc]. However, for other directions of approach to critical 
points the model does not give a natural parameter. 

The existence of critical points leads naturally to the question of the 
existence of an order parameter. In particular, if the critical points form a 
surface that divides the parameter space into more than one region, is there 
an "expectation value" which is zero in some regions and not in others? Or 
perhaps a quantity that jumps between different values upon crossing a 
boundary between regions? We will return to this issue presently. 

3. C R I T I C A L  S U R F A C E S  A N D  E X P O N E N T S  

In this section we report the results of numerical simulations of the 
model. In particular we will discuss the surface of critical points that is 
found in the parameter space, the exponents ~ and o- that we defined in 
Section 2, and finally the exponents associated with the moments of the 
function n(s). These results allow greater precision in the determination of 
the corresponding quantities for the percolation perimeter. The numerical 
method used to determine n(s) is described in Salmerdn eta/. (t7) The size 
of the sample was 1400 x 1400 lattice sites, unless stated otherwise. The 
number of trajectories measured for each run was 10,000, except for the 
determination of the critical surface, where between 1000 and 5000 were 
used, and for the calculation of the exponent r, where up to 120,000 trajec- 
tories were simulated. The data are grouped into bins each one being t.33 
times larger than the previous one. 

3.1. The  Cri t ical  Sur face  

The maps to the percolation problem yield two critical points in the 
parameter space; are these points connected by a "critical line" or possibly 
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a surface? There are two possible ways to determine the position of critical 
loci: count the fraction of bounded trajectories and look for the minimum 
along lines in the parameter space; or look for the places where 2 = 0. In 
fact the former is much more accurate than the latter, since once the length 
scale 2 ~ is greater than the system size, it is an unreliable measure of any- 
thing. However, the number of bounded trajectories retains its meaning, 
with the proviso that it is the number whose spatial extent (as against arc 
length) is smaller than the system size. A crucial factor in determining the 
accuracy of estimation of the critical surface is the proportion of forward 
sites: once this is of the order of half of the sites, it becomes very difficult 
to obtain the location (or even decide the existence) of the critical surface. 
Conversely, in the plane defined by P(0 )=  0 the transition is very sharp. 

Figure 2 represents the critical surface in the region of the parameter 
space with P(0)<  0.5. The lines represent the intersections of the critical 
surface with planes of constant P(0) in steps of 0.1. 

In the case of P (0 )=  0, the critical line indeed connects the two critical 
points associated with maps to percolation. However, near (0, 0, 0) (the 
point O in Fig. 1) the line shows some curvature and it is difficult to 
estimate the angle which the line makes with the axes. Indeed, the behavior 
in the neighborhood of the P(0)axis is peculiar in general: the sections 
through the critical surface for higher values of P(0) initially move away 
from the P(0) axis down the P(~/2) axis and subsequently return to it when 
0.3 < P(0) <0.4. 

Further evidence of the criticality will be presented in the next sub- 
section. 
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Fig. 2. The critical surface in the region P ( 0 ) <  0.5. The lines represent the intersections of 
the critical surface with planes of constant P(0). 
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3.2. The Critical State: The Exponent  T 

The exponent : characterizes n(s) at the critical point and hence is a 
measure as to whether the different points on the critical surface are in the 
same "universality class." Since the points that we have discussed so far 
have  been equivalent to percolation (excluding the "ballistic point"--see 
below) it is possible that the critical surface joining them has the same 
exponent as that implied by percolation. The case of the ballistic point, 
(1, 0, 0), is a little unusual in that all trajectories are clearly infinitely long. 
Thus ~ = 0; the closest analogy is a (classical) phase transition at zero tem- 
perature, where the critical state is ordered. 

First we consider the two points O and Q (see Fig. 1) associated with 
percolation. In the case of O we find �9 = 2.145 + 0.003, and in the case of 
Q we find ~ -- 2.146 + 0.003; the data are shown in Figs. 3 and Fig. 4, 
respectively. (Due to the manner in which we generate the trajectories and 
the geometric progression of the bin size, the exponent is larger than that 
obtained directly from the figure by the additive factor of two.) In Fig. 3 
(and Fig. 4) we also show the data appropriate for the percolation 
perimeter: in the case of O, the number of "empty" and "occupied" bonds 
which define the perimeter; in the case of Q we show the number of empty 
and occupied sites. The values of the exponent z obtained from the 
perimeters are 2.147 _+ 0.007 in the case of O and 2.150 + 0.007 in the case 
of Q. Within the errors the slopes of the number of sites in the perimeter 
and the number of steps in our model agree; however, the latter function 
yields a straight line over a greater range of Ins. The deviations at the left- 
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Fig. 3. Number of trajectories as a function of the number of steps and of the number of 
empty and occupied bond defining the perimeter for the bond percolation point O. 
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Fig. 4. Number of trajectories as a function of the number of steps and of the number of 
empty and occupied sites defining the perimeter for the site percolation point Q. 

hand and right-hand ends of the graph are caused by the validity of the 
functional form assumed for n(s) (which is only valid for large s) and finite- 
size effects of the sample, respectively. These values of : are in agreement, 
within errors, with Ziff's conjecture : =  15/7 _~ 2.143 and his numerical 
estimate. 

We have measured the trajectory length distribution and the exponent 
r for several points on the critical surface. For all of them we found no hint 
of an exponential part of n(s), indicating that they are genuine critical 
points. In Fig. 5 we show the value of r for these critical points in terms of 

Fig. 5. 
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their forward and backward signs probabilities (the remaining turning 
probabilities can be obtained from Fig. 2 and the fact that they all add up 
to unity). The error bars range between 0.004 and 0.008, except for the two 
percolation points. 

The general trend for ~ is a smooth variation from the percolation 
values at O and Q toward 2.000 as we approach the ballistic point B. The 
decrease from O to B is much faster than that from Q to B. The line joining 
the two percolation points deserves special attention: ~ is fairly constant 
near Q, but it decreases sharply as we approach O. 

It should be noted that the line with no backward sites in Fig. 5 does 
not correspond to the P(0)axis in the interval 0<  P(0)~0.35, but follows 
the shape shown in Fig. 2. We have been particularly careful in checking 
that the P(0) axis is not critical in the previous interval. In Fig. 6 we show 
n(s) for the point (0.2, 0, 0) and it is clear that a power law (in s) does not 
fit the data. On the other hand, the point (0.4, 0, 0) demonstrates good 
critical behavior. 

The most striking result in this section is the variation of T on the 
critical surface, implying that the points at different places on the surface 
may belong to distinct universality classes. 

3.3. The Typical Trajectory: The Exponent a 

The form of the distribution function n(s) [Eq. (1)] was determined in 
the P(0) plane for three lines approaching the two critical points corre- 
sponding to percolation. From these results we determine, for the first time, 

Fig. 6. 
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to our knowledge, the exponent ~ associated with the divergence of the 
typical perimeter length.(1) 

We concentrate on the asymptotic, large-s, behavior of the distribution 
function, as a is most readily derived from there. We know the asymptotic 
cluster number distribution, below Pc, has the form of (1) (and of course 
it is the form of correlation functions in thermal statistical physics). 
However, the form of the asymptotic cluster distribution above Pc is quite 
different, with the power of s in the exponential being 1 - l/d, not unity. 
More germanely, there are scaling arguments, relating cluster size to 
perimeter length, which state that the perimeter distribution should not 
be of the form of (1). Instead it has s x in the exponential, where Ziff's 
conjecture is x = 13/12. 

We anticipate, since the trajectories that turn net left and right, for 
P < Pc (in the case of right and backward sites), correspond to external and 
internal perimeters, respectively, that the perimeter distributions will be dif- 
ferent for these two cases. This is because one is associated with clusters of 
sites above Pc and the other is associated with clusters below Pc; hence the 
cluster numbers (and hence perimeters) have different asymptotic forms. 
This was investigated by fitting the numerical data with the different func- 
tional forms (s, s x, and s xn) for the argument of the exponential, the latter 
two corresponding to the perimeter exponents associated with the clusters 
below and above Pc. We find that the first two forms fit the asymptotic 
form of the data for the exterior perimeters equally well; however, the last 
does not. Conversely, the last fits the interior perimeter well, but not the 
exterior distribution well. For the case p >  Pc the converse is true: the 
functional forms s and s x for the argument of the exponential fit well the 
internal perimeters, while the functional form s ~n is adequate for the 
external perimeters. 

As the statistics of the internal perimeters above Pc and external 
perimeters below Pc are much better than the converse, we use them to 
determine the exponent ~r for both the perimeters and the clusters them- 
selves. We can calculate these exponents by fitting the two forms (the 
simple exponential and the exponential of s x) to the data. The results are 
shown in Fig. 7; the a's corresponding to the clusters and the perimeters, 
respectively, are 0.392_ 0.004 and 0.426 _+ 0.004 for the case of the line 
(0, x, 0) (bond percolation). Similar results are obtained for the line 
(0, x, l - x ) ,  (site percolation); they are, respectively, 0.394+_0.004 and 
0.426 -t- 0.004. 

Ziff conjectured that a = 3/7-0.429,  which agrees with our data, 
within errors. The exact result for the bulk exponent is a = 36/91 ~- 0.396, 
again in agreement with our calculation. 

For those lines in the parameter space that can be mapped onto per- 
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Fig. 7. Typical size 2 ', corresponding to clusters ( + )  and to perimeters (x), as a function 
of ] p - P c I  for bond percolation. 

colation problems, we see that we find the expected behavior. However, 
along the line (0, 0, x)(OC) we find very different behavior. The assumed 
functional form (1) of n(s) still fits the data very well, but the exponent c~ 
no longer has the value associated with percolation: cr=0.169_+0.003 is 
found. Thus, the transition is more abrupt than in the percolation cases. 

3.4. Moments of the Trajectory Length Distribution 

From cr and ~ all the scaling exponents can be found and, in 
particular, those associated with the moments of the trajectory length 
distribution. The second moment gives us the average number of steps in 
a trajectory, and is related to the exponent 7: 

~s2n(s)sz~ Ip-pcI -~ (3) 
s 

For percolation, Weinrib and Trugman (15) and Ziff O6) deduce 7 =  
( 3 -  r)/a = 2, independent of the correlation-length exponent v. 

We have obtained the average number of steps as a function of the 
rotation signs probabilities along the same three lines used in the calcula- 
tion of a. The results for the line (0, x, 0) are shown in Fig. 8. The exponent 
7 is equal to the slope of the straight line fitting the data, and the result is 
7 = 2.01 + 0.01. Along the other percolation line, (0, x, 1 - x), the result is 
7=2.002_+0.006. The agreement with the expected value (15"~6) and a 
previous simulation (~4) (7=2.0_+0.1) is again very good. Away from 
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Fig. 8. Second (x) and third ( + ) moments of the trajectory length distribution as a function 
of Ix-0.51 along the line (0, x, 0). 

percolation, completely different values for the exponents are obtained: 
along the line (0, 0, x), 7 = 5.47 _+ 0.03. 

We have calculated the third moment of the trajectory length distribu- 
tion along the line (0, x, 0) and the results are also shown in Fig. 8. The 
slope of the fitted line is 4.38 +_ 0.02 and it should be equal to (4 - 3)/o-. The 
difference between this and 7 is just l /a;  this constitutes a nice indirect way 
to obtain the exponent o-. By this method we obtain a = 0.422 _+ 0.004, in 
very good agreement with our previous estimate. 

4. A N E W  A C C U R A T E  D E T E R M I N A T I O N  OF Pc 

Ziff used the perimeter of percolation clusters to estimate Pc accurately. 
His method had the advantage of generating the perimeter without having 
to populate the cluster itself, allowing the determination of Pc on a small 
computer. Our model includes Ziff's algorithm to generate the perimeter as 
a special case (with only right and backward sites); for instance, the 
method can be extended to other 2D lattices. 

In this section we will determine Pc using a different technique, finite- 
size scaling. The distinction between Ziffs and our calculation is in the 
treatment of finite-size effects. He constructs extremely long trajectories, in 
effect using a very large sample (of the order of 5000 sites) by utilizing a 
virtual memory technique. We consider smaller samples, averaging over 
larger numbers of trajectories, and use finite-size scaling to extrapolate to 
the infinite size Pc. 
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The determination of  pc for a given size of lattice L follows Ziff in that 
we equate the number of "external" and "internal" perimeters. In our 
model these correspond to trajectories turning net left and right, respec- 
tively. We investigated the effect of only using long--greater than 
1000 steps--trajectories as against all trajectories (excluding those 
generated by clusters of two backward or four right sites, as they do not 
correspond to any perimeter). 

We have performed the calculation for lattices of size 150, 250, 500, 
700, 1000, and 1400, with the corresponding number of trajectories being 
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400,000, 200,000, 80,000, 40,000, 30,000 and 10,000. In Fig. 9 we show a 
typical example, for L = 1000, using only long trajectories. Ziff has noted 
that the principal factor in determining the high accuracy of the method is 
the large difference in the critical amplitudes for the average internal and 
external perimeter lengths. 

In Fig. 10 the results for the different values of L are collected for both 
methods--including or excluding short trajectories. The two methods 
extrapolate to the same Pc within the error bars. We find 
pc=0.59279 +0.00002. This is in agreement with the results of Gebele, u8~ 
Pc = 0.59277 + 0.00005, of Ziff (~6~ Pc -- 0.59275 + 0.00003, and in particular 
of Rosso eta/. (19)  Pc = 0.592802 _+ 0.000010. 

5. C O N C L U S I O N S  

The critical surface is perhaps the most striking result of this work. 
One natural question is, given that the parameter space seems to be 
divided into three regions, whether there is an order parameter which 
discriminates among these volumes. A hint as to a possible order parameter 
comes from the examination of the lines which can be mapped onto per- 
colation. Along these lines there is a clear distinction between the nature of 
the trajectories on the different sides of the percolation points. In the case 
of only right- and left-turning sites, the trajectories on the left side of the 
transition tend to be anticlockwise and those on the right side tend to be 
clockwise. In the case of only backward and left (or right), the trajectories 
on the backward side tend to be clockwise (anticlockwise) and those on the 
other side tend to be the opposite. These three tendencies are not com- 
patible, as the two backward segments, corresponding to site percolation, 
belong to the same region of the parameter space, but present opposite 
behaviors. We have tried several possible generalizations, with no success. 

One of the issues that was raised in the introduction was whether the 
model contained critical behavior that was not in the simple percolation 
universality class. We have shown how the exponent r changes when we 
move away from the critical percolation points. 

There are a number of generalizations of the model that could be 
imagined. One is to change the nature of the lattice from being square. In 
some ways the honeycomb lattice is simpler, as there are only three 
possible rotation matrices rather than four. A form of this model has been 
considered by Weinrib and Trugman, uS~ where the rotation matrices are 
defined on the plaquettes, or equivalently the dual lattice. These authors 
were interested in constructing a model of self-avoiding walks, and hence 
did not consider an analogous definition on the square lattice. However, it 
might be interesting to ask what forms of percolation in general one could 
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form from variables defined on the plaquettes--a natural extension of site 
and bond percolation. 

Finally, the extension to three dimensions is a natural generalization. 
We have already considered this in ref. 20. Unlike in two dimensions, no 
particular realization of the method can be mapped onto simple percola- 
tion. This could have been expected, since the relation between walks and 
percolation seems to be closely related to the duality properties of the 
lattice.~l~) 
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